lunes, 8 de junio de 2015

A Longitudinal Study of Structural Risk Factors for Obesity and Diabetes Among American Indian Young Adults, 1994-2008

FULL-TEXT ►

A Longitudinal Study of Structural Risk Factors for Obesity and Diabetes Among American Indian Young Adults, 1994-2008



CDC. Centers for Disease Control and Prevention. CDC 24/7: Saving Lives. Protecting People.



Preventing Chronic Disease Logo





A Longitudinal Study of Structural Risk Factors for Obesity and Diabetes Among American Indian Young Adults, 1994-2008

Tennille L. Marley, PhD, MPH; Molly W. Metzger, PhD

Suggested citation for this article: Marley TL, Metzger MW. A Longitudinal Study of Structural Risk Factors for Obesity and Diabetes Among American Indian Young Adults, 1994–2008. Prev Chronic Dis 2015;12:140469. DOI: http://dx.doi.org/10.5888/pcd12.140469.
PEER REVIEWED

Abstract

Introduction
American Indian young adults have higher rates of obesity and type 2 diabetes than the general US population. They are also more likely than the general population to have higher rates of structural risk factors for obesity and diabetes, such as poverty, frequent changes of residence, and stress. The objective of this study was to investigate possible links between these 2 sets of problems.
Methods
Data from the American Indian subsample of the National Longitudinal Study of Adolescent to Adult Health (Add Health) were used to examine potential links between obesity and type 2 diabetes and structural risk factors such as neighborhood poverty, housing mobility, and stress. We used logistic regression to explore explanatory factors.
Results
American Indians in the subsample had higher rates of poor health, such as elevated hemoglobin A1c levels, self-reported high blood glucose, self-reported diabetes, and overweight or obesity. They also had higher rates of structural risk factors than non-Hispanic whites, such as residing in poorer and more transient neighborhoods and having greater levels of stress. Self-reported stress partially mediated the increased likelihood of high blood glucose or diabetes among American Indians, whereas neighborhood poverty partially mediated their increased likelihood of obesity.
Conclusion
Neighborhood poverty and stress may partially explain the higher rates of overweight, obesity, and type 2 diabetes among American Indian young adults than among non-Hispanic white young adults. Future research should explore additional neighborhood factors such as access to grocery stores selling healthy foods, proximity and safety of playgrounds or other recreational space, and adequate housing.

Acknowledgments

This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill, and funded by grant no. P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies and foundations. We especially acknowledge Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website (www.cpc.unc.edu/projects/addhealth/data). No direct support was received from grant no. P01-HD31921 for this analysis. This publication was made possible by grant no. 1P30DK092950 from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK); its contents are solely the responsibility of the authors and do not necessarily represent the official views of NIDDK.
 Top

Author Information

Corresponding Author: Molly W. Metzger, PhD, Washington University in St Louis, George Warren Brown School of Social Work, One Brookings Dr, Campus Box 1196, St Louis, MO 63130. Telephone: 314-935-6989. Email: mmetzger22@wustl.edu.
Author Affiliation: Tennille L. Marley, Arizona State University, Tempe, Arizona.
 Top

References

  1. Lau M, Lin H, Flores G. Racial/ethnic disparities in health and health care among U.S. adolescents. Health Serv Res 2012;47(5):2031–59. CrossRef PubMed
  2. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA 2012;307(5):483–90. CrossRefPubMed
  3. Hamman RF, Bell RA, Dabelea D, D’Agostino RB Jr, Dolan L, Imperatore G, et al. The SEARCH for Diabetes in Youth study: rationale, findings, and future directions. Diabetes Care 2014;37(12):3336–44. CrossRef PubMed
  4. Frederick CB, Snellman K, Putnam RD. Increasing socioeconomic disparities in adolescent obesity. Proc Natl Acad Sci USA 2014;111(4):1338–42. CrossRef PubMed
  5. Acton KJ, Burrows NR, Moore K, Querec L, Geiss LS, Engelgau MM. Trends in diabetes prevalence among American Indian and Alaska Native children, adolescents, and young adults. Am J Public Health 2002;92(9):1485–90. CrossRef PubMed
  6. Daniels SR, Arnett DK, Eckel RH, Gidding SS, Hayman LL, Kumanyika S, et al. Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment. Circulation 2005;111(15):1999–2012. CrossRef PubMed
  7. Braveman P, Egerter S, Williams DR. The social determinants of health: coming of age. Annu Rev Public Health 2011;32(1):381–98. CrossRef PubMed
  8. Clark ML, Utz SW. Social determinants of type 2 diabetes and health in the United States. World J Diabetes 2014;5(3):296–304. CrossRef PubMed
  9. Wilkinson M, Marmot RG. Social determinants of health. New York (NY): Oxford University Press; 2006.
  10. Piccolo RS, Duncan DT, Pearce N, McKinlay JB. The role of neighborhood characteristics in racial/ethnic disparities in type 2 diabetes: results from the Boston Area Community Health (BACH) survey. Soc Sci Med 2015;130:79–90. CrossRef PubMed
  11. Rudolph KE, Wand GS, Stuart EA, Glass TA, Marques AH, Duncko R, et al. The association between cortisol and neighborhood disadvantage in a U.S. population-based sample of adolescents. Health Place 2014;25:68–77. CrossRef PubMed
  12. Jacobs DE, Wilson J, Dixon SL, Smith J, Evens A. The relationship of housing and population health: a 30-year retrospective analysis. Environ Health Perspect 2009;117(4):597–604.CrossRef PubMed
  13. Burton A. Does poor housing raise diabetes risk? Environ Health Perspect 2007;115(11):A534. CrossRef PubMed
  14. Harris KM. The Add Health Study: design and accomplishments; 2012. http://www.cpc.unc.edu/projects/addhealth/data/guides/DesignPaperWIIV.pdf. Accessed March 31, 2015.
  15. Chantala K. Guidelines for analyzing Add Health data; 2006. http://www.cpc.unc.edu/projects/addhealth/data/guides/wt-guidelines.pdf. Accessed March 31, 2015.
  16. Raudenbush SW, Sampson RJ. Ecometrics: toward a science of assessing ecological settings, with application to the Systematic Social Observation of Neighborhoods. Sociol Methodol 1999;29(1):1–41. CrossRef
  17. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav 1983;24(4):385–96. CrossRef PubMed
  18. Baranowski T, Cooper DM, Harrell J, Hirst K, Kaufman FR, Goran M, et al. Presence of diabetes risk factors in a large U.S. eighth-grade cohort. Diabetes Care 2006;29(2):212–7. CrossRefPubMed
  19. Singh GK, Kogan MD, van Dyck PC. A multilevel analysis of state and regional disparities in childhood and adolescent obesity in the United States. J Community Health 2008;33(2):90–102.CrossRef PubMed
  20. Zick CD, Smith KR, Fan JX, Brown BB, Yamada I, Kowaleski-Jones L. Running to the store? The relationship between neighborhood environments and the risk of obesity. Soc Sci Med 2009;69(10):1493–500. CrossRef PubMed
  21. Morland K, Wing S, Diez Roux A. The contextual effect of the local food environment on residents’ diets: the Atherosclerosis Risk in Communities study. Am J Public Health 2002;92(11):1761–7. CrossRef PubMed
  22. Dabelea D, Hanson RL, Bennett PH, Roumain J, Knowler WC, Pettitt DJ. Increasing prevalence of Type II diabetes in American Indian children. Diabetologia 1998;41(8):904–10. CrossRefPubMed
  23. Fagot-Campagna A, Saaddine JB, Flegal KM, Beckles GL. Diabetes, impaired fasting glucose, and elevated HbA1c in U.S. adolescents: the Third National Health and Nutrition Examination Survey. Diabetes Care 2001;24(5):834–7. CrossRef PubMed
  24. Cohen DA, Finch BK, Bower A, Sastry N. Collective efficacy and obesity: the potential influence of social factors on health. Soc Sci Med 2006;62(3):769–78. CrossRef PubMed
  25. Lloyd C, Smith J, Weinger K. Stress and diabetes: a review of the links. Diabetes Spectr 2005;18(2):121–7. CrossRef
  26. Slopen N, Non A, Williams DR, Roberts AL, Albert MA. Childhood adversity, adult neighborhood context, and cumulative biological risk for chronic diseases in adulthood. Psychosom Med 2014;76(7):481–9. CrossRef PubMed
  27. Fradkin C, Wallander JL, Elliott MN, Tortolero S, Cuccaro P, Schuster MA. Associations between socioeconomic status and obesity in diverse, young adolescents: variation across race/ethnicity and gender. Health Psychol 2015;34(1):1–9. CrossRef PubMed
  28. Zeitler P, Fu J, Tandon N, Nadeau K, Urakami T, Barrett T, et al. Type 2 diabetes in the child and adolescent. Pediatr Diabetes 2014;15(20, Suppl 20):26–46. CrossRef PubMed
  29. Hutchinson RN, Shin S. Systematic review of health disparities for cardiovascular diseases and associated factors among American Indian and Alaska Native populations. PLoS ONE 2014;9(1):e80973. CrossRef PubMed

No hay comentarios: